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Can a fibrillar interface be stronger and
tougher than a non-fibrillar one?

Tian Tang1,†, Chung-Yuen Hui1 and Nicholas J. Glassmaker2

1Department of Theoretical and Applied Mechanics, Cornell University,
Ithaca, NY 14853, USA

2Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA

Elasticity analysis and finite element simulations are carried out to study the strength of an
elastic fibrillar interface. The fibrils are assumed to be in perfect contact with a rigid
substrate. The adhesive interaction between the fibrils and the substrate is modelled by
the Dugdale–Barenblatt model (DB). The condition for a fibrillar interface to be stronger
than a non-fibrillar one is obtained for two regimes: (i) small fibril or flaw insensitive regime;
(ii) large fibril or flaw sensitive regime. The transition between the two regimes is
characterized by a dimensionless parameter that incorporates the material constants of the
elastic fibrils and interfacial properties. The condition for a fibrillar interface to be tougher is
also given. Lateral collapse is found to be detrimental to the strength and toughness of a
fibrillar interface.

Keywords: adhesion; fibrillar interface; strength; toughness; pull-off stress
1The experiments by Geim et al. (2003) showed that the actual force
to pull-off a fibrillar structure is higher than the non-fibrillar smooth
1. INTRODUCTION

It is widely accepted that the quality of adhesion
between an adhesive and a hard substrate depends on
surface interactions as well as the viscoelastic beha-
viour of the adhesive. Viscoelasticity is one of the main
reasons why most adhesives are not reversible since it
causes energy dissipation, which leads to adhesion
hysteresis. Elastic materials such as polydimethylsilox-
ane (PDMS) typically have very low work of adhesion
since the surface interaction forces are of van der Waals
type. In comparison with interfaces reinforced by
hydrogen or covalent bonding, the strength of inter-
faces supported by van der Waals interaction is low.
Hence, it is a considerable challenge to develop an
adhesive that possesses high strength, a large practical
work of adhesion and a recoverable microstructure.
However, the potential for such adhesives is evident
from recent studies of adhesion in geckos and other
animals (Rischick et al. 1996; Autumn et al. 2000;
Scherge & Gorb 2001). Specifically, the feet of most
geckos contain highly fibrillated substructures that give
them the ability to adhere to and separate from a wide
variety of surfaces by relying only on weak dispersive
forces. Despite the low intrinsic energy required to
separate surfaces held together by these forces, these
organisms achieve remarkably strong, reversible
adhesion, which is evident by their ability to rapidly
climb up smooth vertical surfaces.

There have been several efforts (Campolo et al. 2003;
Geim et al. 2003; Sitti & Fearing 2003; Glassmaker et al.
2004; Hui et al. 2004; Peressadko & Gorb 2004) to
orrespondence (tt88@cornell.edu).
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fabricate model fibrillar structures with very small
fibrils (less than 5 mm in diameter) in order to replicate
the dimensions of fibrils found on geckos. These
experiments show that fibrillar samples exhibit larger
pull-off stress per unit actual contact area than non-
fibrillar smooth controls. However, the force required to
pull-off a unit area of fibrillar interface is still less than
non-fibrillar smooth controls1 due to a large decrease in
total contact area in the fibrillar samples. This indicates
that the loss of contact area still outweighs the increase
in adhesion due to small fibrils. A plausible explanation
is that it is extremely difficult for a large number of
small fibrils to maintain uniform contact, as pointed out
by Glassmaker et al. (2004). Surface roughness can also
significantly reduce the effective work of adhesion
between the attachment and the substrate (Persson &
Tosatti 2001; Persson & Gorb 2003; Hui et al. in press).
Buckling of fibrils has also been shown to be detrimental
to adhesion (Hui et al. in press).

The following question naturally arises: is it possible
for an elastic fibrillar interface to be stronger and
tougher than a non-fibrillar one of the same materials,
assuming that the surfaces are in perfect uniform
contact?

In this work, the terms strength and toughness are
used in the following sense. The strength Fs of the
fibrillar/non-fibrillar interfaces shown in figure 1a,b is
defined as the applied load needed to fail the entire
J. R. Soc. Interface (2005) 2, 505–516
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control. Using a very similar system, we have been unable to repeat
their experimental results (Hui et al. 2004). Specifically, we found that
the overall adhesion is reduced for the same fibrillar structure.

q 2005 The Royal Society

http://rsif.royalsocietypublishing.org/


2A 2A

2a

F F

rigid substrate

2c

f

E,  n

(a) (b) (c)

Figure 1. (a) Non-fibrillar structure: force F on an elastic cylindrical flat punch with radius A. (b) Fibrillar structure: force F on
many identical small elastic cylindrical fibrils with radius a/A. (c) Force f on a single elastic fibre with radius c, Young’s
modulus E and Poisson’s ratio n. In all the three structures, the height of the fibres is assumed to be much larger than other
dimensions.
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interface; whereas the energy Wf expended during this
process is defined as the toughness. Thus, the strength
and toughness of a structure will in general depend on
geometric factors such as sample size and fibril
diameter. While there is no conclusive evidence to
indicate that the strength of man-made fibrillar inter-
face is greater than that of a smooth non-fibrillar one,
recent experiments (Hui et al. 2004) on a model system
showed that a fibrillar structure that is well bonded to a
substrate is tougher than a non-fibrillar one.2 Unfortu-
nately, their experimental set-up did not allow them to
probe the question of strength.

Since in many applications strength is more import-
ant than toughness, we first address the following
question: is it theoretically possible for the fibrillar
structure in figure 1b to have a higher strength than the
non-fibrillar structure in figure 1a? If so, what is the
relationship between strength and geometry? In
addition, is it possible to have both high strength and
toughness in a purely elastic system?

In the following, we assume that the structures in
figure 1a,b are in perfect uniform contact with a smooth
rigid substrate. Specifically, in figure 1a, a cylindrical
flat end punch or a very large fibre, of radius A, is in
contact with a rigid substrate. In figure 1b, many
identical small cylindrical fibrils, of radius a/A, are
bonded to the same punch end and are attached to the
same rigid substrate. The height of these fibrils is
assumed to be much greater than their diameter so that
at distances far from the contact, each fibril is subjected
to the same uniaxial tension sZF/(upA2), where F is
the applied load and u is the area fraction occupied by
the fibrils. At first glance, it may seem that the smooth
non-fibrillated punch in figure 1a will have higher
strength, since it has more contact area. This is not a
foregone conclusion since the edge of the punch as well
as the edge of a typical fibril is a stress concentrator.We
will show that it is possible for the unfibrillated
2Uniform contact was achieved by bonding the fibrils which are
macroscopic in size to a glass substrate.

J. R. Soc. Interface (2005)
structure in figure 1a to fail at a lower strength even
though the fibrils in figure 1b may be subjected to a
higher tensile stress. Of course, this scenario is possible
only if the strength of the fibrils increases as fibril radius
decreases. To make this concept precise, let fs(c) be the
strength of a fibre of radius c as shown in figure 1c.
Denote the average tensile stress to fail this fibre by
ss(c), i.e.

ssðcÞZ fsðcÞ=pc2: ð1:1Þ

The force required to fail the unfibrillated structure in
figure 1a, i.e. its strength Fs(A), is obtained by setting
cZA in (1.1), i.e.

FsðAÞZ fsðAÞZpA2ssðAÞ: ð1:2Þ
Similarly, the fibrillar structure in figure 1b fails when
the applied force reaches

FsðaÞZNfsðaÞZupA2
ssðaÞ; ð1:3Þ

where N is the total number of fibrils, and uZNa2/A2 is
the area fraction of the fibrils. Now, the strength of the
fibrillar structure is higher than the unfibrillar one if
and only if

FsðaÞOFsðAÞ: ð1:4Þ
Using equations (1.2) and (1.3), (1.4) can be rewritten
as

ussðaÞOssðAÞ: ð1:5Þ
Thus, we have reduced the problem of comparing
strength to finding the stress ss(c) required to detach a
cylindrical elastic fibre of arbitrary radius c from a rigid
substrate. It should be noted that, for simplicity, we
have denoted the pull-off stress ss by ss(c), indicating
its dependence on the fibre radius c. Of course, ss also
depends on the elastic constants of the fibre, as well as
interfacial adhesion. Later, we show that when properly
normalized, ss depends on a single dimensionless
parameter c which is a function of these quantities.

The plan of this paper is as follows. In §2, we
introduce the cohesive zone model used to characterize

http://rsif.royalsocietypublishing.org/
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the adhesion on the fibre/substrate interface. In §3, we
determine the single fibre pull-off stress ss using
asymptotic analysis and finite element simulations. In
§4, we give the conditions for a fibrillar interface in
figure 1b to have higher strength than a non-fibrillar
interface in figure 1a. The question of toughness is
addressed in §5. Discussions and conclusion are given
in §6.
s < s0 s = s0

cohesive
zone:

contact
region: 0 dc d

Figure 2. Dugdale–Barenblatt (DB) model. Work of adhesion
WadZs0dc; s0 is the interfacial strength and dc is the opening
displacement at failure.
2. MODEL FOR INTERFACE FAILURE

To determine the single fibre pull-off stress ss, we need
to model the interfacial adhesion, that is, the attractive
forces between adhering surfaces. Since molecular
interactions between macroscopic bodies are usually
negligible except near surfaces, we assume that
adhesive interactions occur as surface tractions T,
which depend only on the separation d between the
surfaces. Such models, i.e. so called cohesive zone
models, have been employed to study interfacial failure
in a large number of material systems (Dugdale 1960;
Barenblatt 1962; Rose et al. 1981; Xu & Needleman
1994). It turns out that the condition for interfacial
failure is insensitive to the functional form of the
cohesive zone model, provided that the cohesive
strength and the work of adhesion of the two models
are the same (Maugis 1992).

For interfaces which fail in tension, a simple model is
the DB model (Dugdale 1960; Barenblatt 1962). In this
model, the interface is allowed to separate from the
substrate when the normal traction s on the interface
reaches a tensile value s0. The interface fails or can no
longer support traction when the normal separation
dOdc. For obvious reasons, s0 is called the intrinsic
strength of the interface, which together with dc, are
material constants. In the DB model, the work of
adhesionWad of the surfaces in contact is the area under
the s–d plot shown in figure 2, i.e. WadZs0dc.

In addition to the normal attractive forces, the
interface is also subjected to shear stresses, due to
Poisson contraction. In the following, we assume
friction is sufficiently high so that no slip is allowed
along the interface. This is a very good approximation
for a soft material contacting a rigid surface. With this
assumption, the interface can only fail in the normal
direction.
3. DETERMINATION OF SINGLE FIBRE
PULL-OFF STRESS ss

The geometry is illustrated in figure 1c. A load f is
applied to a long elastic fibre of radius c. The fibre is
assumed to be linearly elastic with Young’s modulus E
and Poisson’s ratio n. Because the fibre is long in
comparison with c, the stress in the fibre far way from
the interface is in pure tension and is given by sZf/pc2.
Our goal is to determine the pull-off force fs or
equivalently, the pull-off stress ssZfs/pc

2.
To motivate the analysis, we note that if the intrinsic

strength s0 could be infinite, the stresses at the fibre
edge would also be infinite, since, as will be shown
below, the stresses at the fibre edge are singular in the
elasticity solution. The fact that the intrinsic strength
J. R. Soc. Interface (2005)
is finite implies that the singular stresses predicted by
the elastic solution cannot be valid near the edge.
Indeed, according to the DB model, the interface will
separate (i.e. dO0) at a critical stress of s0. The region
of the interface where separation occurs is called the
cohesive zone. The DB model states that the normal
stress in the cohesive zone is constant and equal to the
intrinsic strength s0. Physically, one anticipates that
the maximum interfacial separation occurs at the fibre
edge. This maximum interfacial separation dmax

depends on the applied load f. When f reaches a critical
value fs, dmax reaches dc. At this point the interface near
the edge can no longer support normal stress, and crack
initiation starts. Because the fibre is long in comparison
with its radius, crack growth occurs under load control,
which is anticipated to be unstable. Therefore, we
expect that pull-off will occur once a crack is initiated.
This result was confirmed by our finite element
simulations.

The dependence of the pull-off stress on the fibre size
is a consequence of the fact that the region of dominance
of the elastic singular stress field scales with c.
Specifically, if c[l c, where l c denotes the length of
the cohesive zone, there will be a region outside the
cohesive zone where the elastic singular stress field still
dominates. In this region, the normal stress on the
interface is much smaller than s0; hence the average
stress on the fibre can be much smaller than s0 when the
crack initiates. On the other hand, if czl c, the elastic
singular stress field has no region of dominance. In this
case, the cohesive zone occupies the entire fibre/sub-
strate interface; the average pull-off stress reaches its
theoretical limit, i.e. ssZs0. Therefore, large c favours
the concentration of stress near the fibre edge, resulting
in pull-off at low applied force.

We attack the problem of determining ss in two
ways: firstly, we establish a scaling law based on
asymptotic analysis. Secondly, we compute ss using
finite element method. The scaling law will be used to
interpret the result of our finite element simulations.
3.1. Asymptotic analysis

In the limit of infinite interfacial strength, the stresses
at the fibre edge are infinite. The exact form of the
stresses in this case can be obtained using an
asymptotic analysis method based on classical work in

http://rsif.royalsocietypublishing.org/
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Figure 3. (a) Local Cartesian coordinates at the corner of a
cylindrical flat end fibre. (b) Local polar coordinates at the
corner of the fibre.
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elasticity (Bogy & Wang 1971; Dempsey & Sinclair
1981). Details that are relevant to our specific problem
are given in appendix A. Here we state the relevant
results.

Let (x, y, z) be a local Cartesian coordinate system at
the fibre edge, as shown in figure 3a. For an elastic fibre
on a rigid substrate, the normal stress szz near the fibre
edge has the form

szzðx/0; y Z z Z 0ÞZCxKl; ð3:1Þ

where 0!l!1 is a numerical factor which depends on
the Poisson’s ratio, e.g. ly0.4 for nZ0.5. Values of l for
other n are given in appendix A. In (3.1), C is a constant
which depends on the loading conditions and cannot be
determined by asymptotic analysis. Linear elasticity
and dimensional considerations imply that

C Zascl; ð3:2Þ

where shf/pc2 is the average stress on the fibre and a is
an unknown numerical factor of order one.

Equation (3.1) allows us to estimate the critical
stress for pull-off, ss, in the limit where the cohesive
zone is very small in comparison with the fibre radius.
We call this limit the flaw sensitive regime. The length
of the cohesive zone l c can be estimated by evaluating
the stress given by (3.1) at xZl c and equating the result
to the intrinsic strength s0. The cohesive length is found
to be

l c=cZ ðas=s0Þ1=l: ð3:3Þ

From dimensional considerations, the maximum sep-
aration in the cohesive zone, dmax hdðxZyZzZ0Þ,
has the form

dmax Z q
s0

E� l c; ð3:4Þ

where E*hE/(1Kn2), and q is an unknown numerical
factor of order 1. Substituting equation (3.3) into (3.4)
gives

dmax Z q
cs0
E�

as

s0

� �1=l

: ð3:5Þ

Applying the condition of pull-off, dmaxZdc, to equation
(3.5) results in

ss Z s0Bc
Kl; ð3:6Þ

where BhaK1ð2pqÞKl and c is a dimensionless par-
ameter defined by

chs0c=2pE
�dc Z s20c=2pE

�Wad: ð3:7Þ

For equation (3.6) to be valid, the length of the cohesive
zone must be much smaller than the fibre radius, i.e.
l c/c/1. Using equations (3.3) and (3.6), this condition
translates to c[1, where we have neglected a
numerical factor of order 1. The condition c[1
corresponds to high interfacial strength, low fibre
stiffness, or large fibre radius.

In the other limit, which we shall refer to as the flaw
insensitive regime, c/1, corresponding to low intrin-
sic strength, high fibre stiffness, or small fibre radius. In
this regime, the cohesive zone occupies the entire
J. R. Soc. Interface (2005)
interface; and the pull-off stress is simply

ss Z s0: ð3:8Þ

That is, while equation (3.6) predicts ss/s0/N as
c/0, the pull-off stress is actually limited by the
cohesive strength.

The above analysis suggests that, for a given
Poisson’s ratio, the normalized pull-off stress ss/s0
depends only on a single dimensionless parameter c, i.e.

ss=s0 ZFðcÞ; ð3:9Þ

where F(c) is a dimensionless function which has the
property

FðcÞZ
BcKl c[1;

1 c/1:

(
ð3:10Þ

The fact that for a given Poisson’s ratio, the normalized
pull-off stress ss/s0 depends only on c can be proved
rigorously. The proof of this result is given in appendix
B. This result is relevant since it expedites the
numerical analysis, as the effects of geometry, modulus,
interfacial strength and work of adhesion are incorpor-
ated into a single parameter. This parameter c has also
been mentioned by Gao et al. (2005) in their work to
study the pull-off of a single fibre from a rigid substrate
with a pre-existing edge crack (a defect). Unlike the
crack initiation problem we study here, the pull-off of
the fibre in Gao’s work is a result of crack propagation.
In the flaw sensitive regime, Gao et al. obtained the
pull-off stress by applying the Griffith energy balance
criterion at the crack tip. The result is a linear relation
between ss and cK1/2. In the flaw insensitive regime,
Gao et al. also used equation (3.8). Similar analysis on
different systems has been carried out by Persson
(2003a) to characterize the flaw sensitive to flaw
insensitive failure in the adhesion of small-sized bodies
with other geometries.
3.2. Numerical results

Finite element simulations were carried out using
ABAQUS (Hibbit, Karlsson & Sorensen, Inc.) for the
pull-off of an elastic fibre from a rigid substrate. The

http://rsif.royalsocietypublishing.org/
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fibre is assumed to be nearly incompressible with
nZ0.49. The DB cohesive zone model is implemented
for different values of c. Some details of the simulations
are given in appendix C.

Figure 4 plots the normalized pull-off stress ss/s0Z
F(c) versus c. The asymptotic behaviour of F(c) in the
flaw sensitive regime, equation (3.6), is plotted on the
same figure as a comparison. Although equation (3.6) is
supposed to be valid for very large c, our finite element
results show that it is an excellent approximation right
up to the transition point, cZcTz0.7, where F(c)
abruptly levels out. For c/cT, the normalized pull-off
stress is 1, as predicted by equation (3.8).

To summarize, the normalized pull-off stress for a
nearly incompressible fibre is well approximated by

ss=s0 ZFðcÞZ
BcKl cOcT;

1 c%cT;

(
ð3:11Þ

where lz0.4. The constant B is determined using our
finite element result, and it is 0.83.

It should be noted that for fibrils appearing in
biological systems, the material does not need to be
incompressible. However, there is no difficulty
extending our analysis to that situation. Indeed, the
asymptotic result (3.10) is expected to be true for all
materials, and l varies with n according to figure 7 (see
appendix A). The constant B, which is expected to be of
order one, for a particular Poisson’s ratio n can be
obtained by carrying out finite element simulations.
3We have chosen a square lattice for simplicity; a hexagonal close
packed configuration will give the largest u for a given spacing.
4. STRENGTH OF A FIBRILLAR INTERFACE

Equations (1.5) and (3.11) allow us to address the
question whether it is possible for the fibrillar structure
in figure 1b to have a higher strength than the non-
fibrillar structure in figure 1a. In the following, we
assume that the large ‘fibre’ or the non-fibrillar inter-
face in figure 1a is in the flaw sensitive regime where
cðAÞhs20A=2pE

�WadOcT, and discuss two possible
strength scenarios for the fibrillar interface shown in
figure 1b.

Case I: cðaÞhs20a=2pE
�Wad%cT (small fibrils)

In this case, the fibrils are in the flaw insensitive
regime. Using equation (3.11), ss(a) and ss(A) can be
evaluated. Substituting them into equation (1.5) gives

uOB½cðAÞ�Kl: ð4:1Þ

Equation (4.1) implies that the strength of fibrillar
structure in figure 1b is higher than the non-fibrillar one
in figure 1a as long as

AO
2pE�Wad

s20

B

u

� �1=l

: ðCase IÞ: ð4:2Þ

Case II: c(a)OcT
In this case, the fibrils are also in the flaw sensitive

regime, and equation (1.5) becomes

AOauK1=l: ðCase IIÞ: ð4:3Þ

The scaling law (4.3) depends only on the geometry and
is independent of material properties. This conclusion,
however, is not exactly true, since when the fibrils are
J. R. Soc. Interface (2005)
too close (i.e. large u); they tend to stick laterally to
reduce surface energy, which prevents them from
making good contact. This phenomenon has been
studied by several investigators (Hui et al. 2002;
Persson 2003b; Sitti & Fearing 2003; Glassmaker
et al. 2004) using similar approaches but with different
geometries. In this work, we use the result obtained by
Glassmaker et al. (2004) since they consider both
lateral and cross-sectional elastic deformations of the
fibril during lateral sticking. It has been shown by
Glassmaker et al. (2004) that to prevent sticking of two
cylindrical fibrils of radius a, they have to be separated
by at least a distance of ahmin, where

hmin Z
211gs

p4E�a

� �1=6
gs

3Ea

� �1=2 h

a

� �2

; ð4:4Þ

h is the height of the fibrils and gs is the surface energy
of the material of the fibrils. For cylindrical fibrils
distributed uniformly on a square lattice with spacing
ha,3 the area fraction is

uZ
p

ðhC2Þ2
: ð4:5Þ

Substituting equation (4.5) into equations (4.2) and
(4.3) gives the conditions for a fibrillar interface in
figure 1b to be stronger than a non-fibrillar one in
figure 1a

AO
2pE�Wad

s20

BðhC2Þ2

p

� �1=l
and hRhmin

Case I :
s20a

2pE�Wad

%cT

� �
; ð4:6Þ

http://rsif.royalsocietypublishing.org/


Table 1. Examples of strength and toughness of a fibrillar interface in the flaw insensitive and flaw sensitive regimes for two types
of materials.

soft materials, e.g. PDMS stiff materials, e.g. keratin

E (MPa) 1 2000
n 0.5 0.5
gs (mJ mK2) 50 50
Wad (mJ mK2) 50 50
s0 (MPa) 0.1 20

flaw insensitive flaw sensitive flaw insensitive flaw sensitive

a (mm) 10 100 1 10
c 0.24 2.4 0.48 4.8
hZ10a (mm) 100 1000 10 100
hmin 2.67 0.58 0.08 0.017
umax 0.14 0.47 0.73 0.77

condition for fibrillar
interface to be
stronger at uZumax

AO3.35 mm AO0.65 mm AO3 mm AO19 mm
a common value of AZ4 mm is used to

calculate Fs and Wf below
a common value of AZ20 mm is used to calculate Fs

and Wf below
ss (MPa) 0.1 0.06 20 8.88
Fs (N) at uZumax 0.72 1.39 0.02 0.01
Wf (J) at uZumax 3.98!10K6 4.21!10K5 9.6!10K10 1.96!10K9
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AOa
ðhC2Þ2=l

p1=l
and hRhmin

Case II :
s20a

2pE�Wad

OcT

� �
: ð4:7Þ

For a very soft incompressible material with van der
Waals surface interactions, e.g. PDMS, Ez1 MPa,
nz0.5 and gsz50 mJ mK2. Since it is unlikely for the
intrinsic strength of the fibril/substrate interface to
exceed the fibril modulus (Hui et al. 2003), we assume
s0z0.1 MPa,Wadz50 mJ mK2, and the aspect ratio of
the fibrils is h/aZ10. Table 1 compares the strength of
two geometries, one of which lies in the flaw insensitive
regime, and the other lies in the flaw sensitive regime.
The minimum spacing hmin between the fibrils to avoid
lateral collapse is calculated using equation (4.4). The
corresponding maximum area fraction umax of fibrils is
obtained from equation (4.5) by using hZhmin.
Substituting hZhmin into equations (4.6) and (4.7),
we obtained the conditions, i.e. the ranges of A, for a
fibrillar interface to be stronger than a non-fibrillar one,
if the fibrillar interface has its maximum allowed area
fraction. These are the most conservative conditions for
A because A needs to be greater if u!umax. Using
equation (1.3) and a common value of A that satisfies
the above conditions, we calculated the strength Fs of a
fibrillar interface at uZumax in both the flaw insensi-
tive and flaw sensitive regimes.

It can be seen from table 1 that although the single
fibre pull-off stress ss is higher in the flaw insensitive
regime, the strength of the fibrillar interface in this
regime may be lower than that in the flaw sensitive
regime. This is because the strength is directly
proportional to u, while the area fraction allowed in
the flaw insensitive regime is much lower. Therefore,
the compliance of the fibrils and hence lateral collapse
impose a very large constraint on the strength. The
same estimates can be carried out for a stiffer material.
For example, the material found in gecko setae, keratin,
J. R. Soc. Interface (2005)
has a modulus of about 2 GPa. Using the same gs, Wad

and aspect ratio h/a, while assuming s0z20 MPa
(Gao et al. 2005), the maximum area fraction is found
to be about the same for the flaw insensitive and flaw
sensitive regime (see table 1), and therefore for the
same A, the strength is higher in the flaw insensitive
regime. It can be seen from above analysis that there is
an optimal range of fibril sizes in which higher strength
can be obtained. For soft materials, this range lies in the
flaw sensitive regime; while for stiff materials, it lies in
the flaw insensitive regime. Note that in all cases, the
strength of a fibrillar interface exceeds its non-fibrillar
counterpart when A is greater than the critical value
specified in table 1.
5. TOUGHNESS OF A FIBRILLAR INTERFACE

To increase toughness, energy must be dissipated. Since
the system is elastic, and the surface interaction is rate
independent, one would expect the toughnessWf for the
structures shown in figure 1a,b to be pA2Wad and
upA2Wad, respectively; so that the non-fibrillar inter-
face should have a higher toughness. That this need not
be the case was explored by Jagota & Bennison (2002),
who pointed out that there is an analogy between the
failure of a fibrillar interface and that of rubbery
materials. Lake & Thomas (1967) noted that the
fracture energies of rubbery solids are much higher
than the energy required to sever carbon–carbon bonds.
By assuming all the elastic energy stored between cross-
links is lost whenever any bond between the two is
severed, they established a scaling relation between
molecular entanglements and the fracture energy.
Furthermore, they demonstrated that their theory
could explain their experimental data. Based on this
idea, Jagota & Bennison (2002) proposed that, for
sufficiently long and thin fibrils, the elastic strain
energy stored in the fibrils is not recoverable at pull-off.
By this argument, the total energy dissipated in a
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fibrillar interface is

Wf ZupA2 s2s

2E
hCWad

� �
; ð5:1Þ

where ss is the pull-off stress determined by equation
(3.11), and h is the height of a fibril. Equation (5.1)
implies that a fibrillar interface is tougher if WfO
pA2Wad, i.e.

s2s

2E
hO

1Ku

u
Wad: ð5:2Þ

Since ss increases as the size of the fibrils decrease,
equation (5.2) indicates that an interface consisting of
thin and long fibrils, under the condition that no lateral
collapse occurs, can have both higher strength and
higher toughness than a non-fibrillar interface.

The toughnessWf at uZumax is computed in table 1
using (5.1) for two types of material in both flaw
insensitive and flaw sensitive regimes. In all the four
cases, inequality (5.2) is satisfied, indicating the
fibrillar interface is tougher. Similarly to the strength,
the toughness in the flaw sensitive regime may be
higher than that in the flaw insensitive regime due to
the lateral collapse constraint. Note that in table 1, the
toughness of the stiff materials in the flaw sensitive
regime is still greater even though the area fraction in
this regime is about the same as that in the flaw
insensitive regime. The reason of this result is that we
used the same aspect ratio h/a in the calculations so
that h in the flaw sensitive regime is much larger. Since
in equation (5.1) the elastic energy stored in the fibrils
is directly proportional to h, Wf is significantly
increased.
Figure 5. Comparison between different fibrillar structures.
(a) Flat end fibrils with radius a. (b) Fibrils with a
spherical tip of radius Rza. (c) Fibrils with a spherical tip
of radius R/a. (d) Fibrils with a spherical tip of radius
R[a. (e) Fibrils with a shallow spherical tip.
6. DISCUSSIONS AND CONCLUSION

It is interesting to compare our analysis with the
contact mechanics theories of Johnson–Kendall–
Roberts (JKR 1971) and Maugis (1992). These theories
have been used by many authors (Arzt et al. 2003; Sitti
& Fearing 2003; Peressadko & Gorb 2004) to determine
the scaling rule governing the adhesion of geckos.
Instead of having flat contact, these theories allow that
one or both of the surfaces in contact are spherical, e.g.
each fibril ends with a spherical tip of radius R.
Generally it is implicitly assumed that R is of the
same order as the fibre radius a as shown in figure 5b.

The JKR theory is an extension of the Hertz theory
of contact, in that it accounts for the adhesion of
spherical lenses by including the effect of attractive
surface forces that act when the bodies are in contact.
These surfaces forces are modified by adding a tensile
stress distribution to the usual compressive Hertz
pressure that exists in the contact region. Because it
is only within the contact region that the stresses are
modified, the JKR theory ignores any surface forces
that act outside the contact region, and, therefore, may
not be applicable when the contact region is small. A
limitation of the JKR theory is that tensile stresses are
unbounded at the edge of the contact region. In reality,
however, cohesive forces will act outside the contact
region, and they will serve to place a limit on the
J. R. Soc. Interface (2005)
maximum stress that is reached. Because of this,
attempts to better model adhesion contact have been
made by accounting for surface forces that act outside
the contact edge. Derjaguin–Muller–Toporov (DMT
1975) proposed a theory that takes these forces into
account, but assumes that they do not change the shape
of the deformed surfaces from the Hertzian profile. This
approximation leads to adhesion (tensile) stresses that
are finite outside the contact zone but are zero inside. A
unifying model of elastic contact was proposed by
Maugis (1992), who used the DBmodel to represent the
surface forces outside the contact zone, and found that
the transition from JKR to DMT theory can be
characterized using a dimensionless Tabor parameter

lMaugis h
2s0

½16pWadðE�Þ2=9R�1=3
: ð6:1Þ

Analogous to the adhesion of flat interfaces considered
in this paper, JKR theory corresponds to the flaw
sensitive regime and is valid when lMaugis[1. On the
other hand, DMT theory corresponds to the flaw insen-
sitive regime and is applicable when lMaugis/1. The
force needed to pull off a single fibre with tip radius R is
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predicted respectively by JKR and DMT theories as

f JKR
s Z 3pRWad=2; ð6:2Þ

fDMT
s Z 2pRWad: ð6:3Þ

Assuming the fibre radius azR, the average pull-off
stress for the two theories are

sJKR
s zf JKR

s =pR2z3Wad=2R; ð6:4Þ

sDMT
s zfDMT

s =pR2z2Wad=R: ð6:5Þ
Equations (6.4) and (6.5) imply that the pull-off stress
increases as R decreases, consistent with our results,
although the dependence of ss on R is different from
equation (3.11). Unlike the case of flat fibrils, the
difference in the single fibre pull-off stress between
the flaw sensitive and flaw insensitive regime is small,
i.e. ðsDMT

s KsJKR
s Þ=sDMT

s Z1=4. Furthermore, neither
theory gives an upper bound for the pull-off stress.
Indeed, sJKR

s /N, sDMT
s /NasR/0. In this limit, the

fibre can never be pulled off! This inconsistency was also
noted by Gao et al. (2005).

The above argument, however, is misleading because
the application of JKR and DMT theories is subject to
several restrictions. Specifically, in all three theories
(JKR, DMT and Maugis), the lenses in contact are
modelled as half spaces, and the region outside the
contact zone is treated as a semi-infinite crack. This
approximation is valid only if the size of the contact
region is much smaller than the radius of the lenses.
This condition for the JKR theory, if we use the contact
radius at pull-off aJKRzðWadR

2=E�Þ1=3, translates to

R[Wad=E
� ðJKRÞ: ð6:6Þ

For the DMT theory, since the contact profile is locally
parabolic, the interfacial opening at the contact edge is
a2DMT=2R, where aDMT is the contact radius in the DMT
theory. At pull off, the opening at the contact edge
reaches dc. Therefore, the condition aDMT/R is

ffiffiffiffiffiffiffiffiffiffi
2Rdc

p

/R or

R[dc ðDMTÞ; ð6:7Þ
where we have neglected a numerical factor of order
one. Equations (6.6) and (6.7) impose constraints on
the radius of curvature R, so that the limit of R/0 is
not meaningful. A further restriction is Maugis’
transition condition: lMaugis[1 in JKR theory, and
lMaugis/1 in DMT theory, where lMaugis is defined by
equation (6.1). This condition results in

R[
2pWadðE�Þ2

9s30
ðJKRÞ; ð6:8Þ

R/
2pWadðE�Þ2

9s30
ðDMTÞ: ð6:9Þ

For a soft incompressible material and an interface
dominated by van der Waals interaction, Ez1 MPa,
nz0.5 and Wadz50 mJ mK2. Let s0ZE/10Z0.1 MPa,
the right-hand side of equations (6.6) and (6.8) are 38
and 62 mm, respectively. Thus, JKR theory is applicable
if R[62 mm. Using dcZWad/s0, equations (6.7) and
(6.9) predict that DMT theory is applicable provided
that R satisfies the inequality 0.5 mm/R/62 mm.
J. R. Soc. Interface (2005)
For a stiffer material such as keratin, Ez2 GPa;
assuming s0Z20 MPa (Gao et al. 2005), the appli-
cability of JKR theory require R[31 mm, while DMT
theory is valid for 2.5 nm/R/31 mm. In this case, it
is likely that DMT theory would be more appropriate,
since the radius of fibrils in biological systems is typical
in the 1 mm range. However, as can be seen from
equations (6.8) and (6.9), the usage of the two theories
strongly depends on the intrinsic strength s0, while a
good estimate of the intrinsic strength of keratin is not
available from existing experimental data. For
example, if we use s0Z100 MPa instead, then JKR
theory is valid when R[0.25 mm, and DMT theory is
valid when 0.5 nm/R/0.25 mm. In this situation,
the use of JKR theory would be justified.

Physically, one expects that the strength of the flat-
ended fibrils in figure 5amust be stronger the spherical-
ended fibrils in figure 5b. For simplicity, we compare the
flaw insensitive regimes of both structures, where they
obtain their highest strength. The flaw insensitive
regime of figure 5a corresponds to uniform stress
distributions0 on the interface.Therefore the strength is

F ðaÞ
s ZNf ðaÞs ZupA2s0; ð6:10Þ

where N is the total number of fibrils, and uZNa2/A2

is the area fraction. The flaw insensitive regime of
figure 5b corresponds to the DMT limit, and the
strength is

F ðbÞ
s ZNf ðbÞs z

uA2

R2
2pRWad ZupA2s0

2dc
R

� �
; ð6:11Þ

where WadZs0dc and Rza have been used. According
to equation (6.7), dc/R/1. Therefore, equation (6.10)
is much larger than equation (6.11), indicating a flat-
ended structure has better adhesion than a spherical-
ended one with the same area fraction.

As shown by Persson (2003a,b), plate-like structures
found in geckos serve to improve adhesive contact on
rough surfaces. However, since we are not only
interested in geckos but also in fibrillar structures one
can make with current technology, it is worthwhile to
compare fibrillar interfaces with different tip struc-
tures, as shown in figure 5c–e. The strength of the
fibrillar interface in figure 5c, where R/a, is

F ðcÞ
s ZNf ðcÞs Z

uA2

a2
2pRWad ZupA2s0

2dc
R

� �
R

a

� �2

:

ð6:12Þ

Since dc/R/1 and R/a/1, the structure in figure 5a
is stronger than the one shown in figure 5c. However,
the strength of the structure shown in figure 5d, where
R[a, can be higher than the strength of the flat-ended
structure. Specifically

F ðdÞ
s ZNf ðdÞs Z

uA2

a2
2pRWad ZupA2s0

2dc
R

� �
R

a

� �2

:

ð6:13Þ

Since R/a[1, F
ðdÞ
s can be greater than F

ðaÞ
s . This

reasoning is flawed since we have implicitly assumed
that u is the same for both structures, whereas in
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reality, u for the structure in figure 5d is much less. This
is due to the fact that the lateral collapse condition
(4.4) must be modified because the spheres can stick to
each other before the sides make contact. More
significantly, because of the spherical tip, the number
of fibrils allowed on the interface cannot exceed
A2/R2, i.e.

F ðdÞ
s ZNf ðdÞs !

A2

R2
2pRWad ZupA2s0

2dc
uR

� �
; ð6:14Þ

where u denotes the area fraction of the structure in
figure 5a. Since in general dc/R/u, equation (6.14) is
much smaller than upA2s0, the strength of the
structure in figure 5a.

There has been some confusion in current literature
regarding the strength of a spherically tipped fibrillar
interface. For example, in a recent work, Spolenak et al.
(2005) have explored the influence of contact end shape.
While providing several enlightening results on the
scaling of the strength for the various shapes they
consider, our work shows that these results are not
universally applicable. Specifically, they consider a
scenario in which a fibre with a spherical end of radius
of curvature R subdivides into N fibrils with tips having
the same radius of curvature and show that the strength
of such an interface (figure 5e) can be higher than a
fibrillar interface with flat tips (figure 5a). In this case,
usage of the JKR theory will predict

F ðeÞ
s ZNf ðeÞs Z

uA2

a2
3pRWad

2
ðJKRÞ; ð6:15Þ

where F
ðeÞ
s is the strength of the fibril bundle in

figure 5e. Comparing equation (6.15) with the strength
of figure 5a in the flaw sensitive regime, i.e.

F ðaÞ
s ZupA2 0:83s0

s20a

2pE�Wad

� �K0:4
" #

ðflaw sensitiveÞ;

ð6:16Þ
we found

F ðeÞ
s ZF ðaÞ

s

3

1:66

W 3
adR

5

ð2pE�Þ2s0a8

� �1=5
ðJKRÞ: ð6:17Þ

Since R[a, it seems that equation (6.15) can be much
greater than equation (6.16). This argument, however,
is flawed, since the geometric constraints for the use of
the JKR theory have not been taken into account.
Specifically in this case, the contact area for each fibril
can never exceed the size of the fibril. Indeed, for the
half space assumption in the JKR theory to be valid,

the contact radius aJKRzðWadR
2=E�Þ1=3/a. Substi-

tuting this inequality into (6.17) results in

F ðeÞ
s /F ðaÞ

s

WadðE�Þ2

s30R

� �1=15
ðJKRÞ: ð6:18Þ

Maugis transition condition (6.8) implies that JKR

theory is valid as long as WadðE�Þ2=s30R/1, therefore
equation (6.18) indicates the strength of the fibril
bundle in figure 5e can never exceed that of figure 5a.
Indeed, if equation (6.15) were larger than equation
(6.16), then the contact radius at pull-off has to be
J. R. Soc. Interface (2005)
much greater than the fibril radius for the interface,
which is impossible. An equivalent argument is that for
a given tip radius R, the numbers of fibrils allowed for
using the JKR theory in figure 5e have an upper bound,
i.e. the following condition must be satisfied

N Z
uA2

a2
/uA2 E�

WadR
2

� �2=3

: ð6:19Þ

Likewise, it can be easily shown that the strength of
the fibril bundle in figure 5e is still lower than that of
figure 5a, if one assumes that adhesion is in the DMT
regime. That is,

F ðeÞ
s Z

uA2

a2
2pRWad ðDMTÞ: ð6:20Þ

Comparing equation (6.20) with the strength of
figure 5a in the flaw insensitive regime, equation
(6.10), results in

F ðeÞ
s ZF ðaÞ

s

2Rdc
a2

ZF ðaÞ
s

aDMT

a

� �2
/F ðaÞ

s ðDMTÞ;

ð6:21Þ

where the last statement is true because aDMT/a/1.
Note that aDMT must be less than aJKR at the same
applied load, since the geometry is not changed by
adhesive surface forces in the DMT theory. Physically,
a flat-ended fibrillar interface is better than a spheri-
cally ended one because the average stress on each
spherically ended fibril can never reach the interfacial
strength s0, which is the average stress on each flat-
ended fibril in the flaw insensitive limit.

Even with the assumption of perfect uniform contact,
for compliant fibrils, lateral collapse can be detrimental
to the adhesion of a fibrillar interface. Of course, perfect
uniform contacts do not occur in natural systems. This
means that the strength and toughness derived here are
theoretical upper bounds. Indeed, recent work by
Persson & Tosatti (2001), Persson & Gorb (2003) and
Hui et al. (in press) have demonstrated that rough
surface can reduce both the strength and the effective
work of adhesion in a significantway.For example,when
a rough surface is in contact with a fibrillar structure,
some fibrils are under compression whereas others are in
tension, as illustrated in figure 6. This means that fibrils
will not be pulled off uniformly, resulting in much lower
strength and toughness.This is the reasonwhyplate-like
spatula structures are found in geckos to lower the
contact resistance. Also, the fibrils can buckle to
increase the compliance of the system. Indeed, if the
fibrils in figure 6 have spherical tips, then the mean pull-
off force decreases with increasing roughness height
standard deviation: the relationship is linear for small
height variance, and the pull off force trails off to zero for
very rough surfaces (Hui et al. in press). On the other
hand, thework of separation is shown tobe unaffected by
small roughness height standard deviation, although it
decreases toward zero for rougher surfaces. The effects of
roughness may be offset by increasing fibrillar compli-
ance; for small roughness height standard deviation, Hui
et al. (in press) showed that the reduction in the pull off
force is inversely proportional to the normalized
compliance. Also, the work of separation increases
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Figure 6. Illustration of a fibrillar structure on a rough
surface. Some fibrils are in tension, marked with ‘T’, some are
in compression, marked with ‘C’, and some are neutral,
marked with ‘N’. This figure is for demonstrating the effect of
roughness. In the analysis by Hui et al. (in press), the fibrils
are considered to be springs, and the compliance of the springs
can be computed based on beam bending.
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linearly with the compliance when the compliance is
large compared to the roughness height variance.

To conclude, our analysis shows that it is possible for
a fibrillar interface to be both stronger and tougher
than a flat one even in a purely elastic system, provided
that the conditions (4.6), (4.7) and (5.2) are satisfied.
However, lateral collapse puts a significant constraint
on the strength and toughness of a fibrillar interface by
limiting the area fraction of the fibrils. In fact, we have
examples for which the strength and toughness of a
fibrillar interface are both lower in the flaw insensitive
regime than in the flaw sensitive regime. In actual
physical systems, the roughness of the surface can also
be detrimental to the strength and toughness of a
fibrillar interface.

We acknowledge Prof. Anand Jagota of Lehigh University,
who has had many discussions with us and also allowed us to
use his finite element program.
c

Figure 8. (a) Cylindrical coordinate system of the fibre.
(b) Cohesive zone generated in the region b%r%c.
APPENDIX A. DETERMINATION OF STRESS
SINGULARITY l AT CORNER
OF THE ELASTIC FIBRE

The asymptotic behaviour of the elastic solution near
the corner of the fibre can be examined using the
method proposed by Bogy & Wang (1971) and
Dempsey & Sinclair (1981). Assume the stresses near
the corner are proportional to rKl, where r is the
distance from the corner, shown in figure 3b, and l is the
singularity. Using a complex variable analysis (Bogy &
Wang 1971) and boundary conditions, the equation
governing the singularity is found to be

4ð1KlÞ2K2k cos pð1KlÞKðk2 C1ÞZ 0; ðA 1Þ

where kh3K4n, and n is the Poisson’s ratio. We seek
solution for 0!l!1. Figure 7 shows the numerical
result for the relation between l and Poisson’s ratio n.
For each n, there is a unique solution between 0 and 1.
In particular, for an incompressible material, nZ0.5,
kZ1 and lz0.4.

It should be noted that as shown by Dempsey et al.
(Dempsey & Sinclair 1981), singular stress field of the
form rKl ln r can exist for certain special material
combinations. We have not considered these special
cases.
J. R. Soc. Interface (2005)
APPENDIX B. DEPENDENCE OF THE
NORMALIZED PULL-OFF
STRESS ss/s0 ON A SINGLE
DIMENSIONLESS PARAMETER
chs2

0c=2pE
�W ad

Consider the pull-off of a cylindrical elastic fibre with
radius c on a rigid substrate under a far field loading
stress s. The elastic fibre has Young’s modulus E and
Poisson’s ratio n. The DB cohesive zone model is
introduced on the interface between the fibre and the
substrate, with the intrinsic strength s0 and the critical
opening dc. The coordinate system used in the
formulation is shown in figure 8. Let ui, 3ij and sij
denote the displacement, strain and stress components,
respectively.

Because of axis-symmetry, the non-zero displace-
ment components for this problem are urZur(r, z) and
uzZuz(r, z). Introduce the following normalization:

�rhr=c; �zhz=c; �ui hGui=sc;

�sij hsij=s0; �ehð �r �urÞ; �r= �rC �uz; �z ;
ðB 1Þ

http://rsif.royalsocietypublishing.org/


Can fibrillar interface be strong and tough T. Tang and others 515

 rsif.royalsocietypublishing.orgDownloaded from 
where GZE/2(1Cn) is the shear modulus. �uz; �z denotes
the partial derivative of �uz with respect to �z and so on.
The equilibrium equations in terms of the normalized
quantities are

1Kn

1K2n

v �e

v �r
C

v

2v �z

v �ur
v �z

K
v �uz

v �r

� �
Z 0; ðB 2aÞ

1Kn

1K2n

v �e

v �z
C

1

2 �r

v

v �r
�r

v �ur
v �z

K
v �uz

v �r

� �� �
Z 0; ðB 2bÞ

which depend only on the Poisson’s ratio. Under the far
field loading s, a cohesive zone is generated in the
annulus b%r%c. The boundary conditions before pull-
off are

�srrð �r Z 1ÞZ 2s

s0

v �ur

v �r
C

n �e

1K2n

� �
�rZ1 Z 0;j ðB 3aÞ

�srzð �r Z 1ÞZ 2s

s0

v �ur
v �z

C
v �uz

v �r

� �
�rZ1 Z 0;j ðB 3bÞ

�urð �r!1; �z Z 0ÞZ 0; ðB 3cÞ

�uzð �r!b=c; �z Z 0ÞZ 0; ðB 3dÞ

�szzðb=c! �r!1; �z Z 0Þ
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v �z
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n �e

1K2n

� �
�r!1; �z/NZ

s

s0
:

���� ðB 3f Þ

(B 3a) and (B 3b) are traction free conditions on outer
surface, (B 3c) is full friction condition on the interface,
(B 3d ) is the contact condition, (B 3e) is the interfacial
cohesive zone model, and (B 3f ) is the far field loading
condition. Note that b is an unknown of the problem,
and is part of the solution. From equilibrium equations
(B 2a) and (B 2b) and boundary conditions (B 3a–f ), it
can be seen that, for a given Poisson’s ratio n, the
normalized displacements and stresses depend only one
dimensionless parameter s/s0.

Pull-off occurs when the displacement uz at the edge
of the fibre rZc, zZ0 reaches dc, the critical opening in
the DB model. Our analysis implies that at pull-off

�uzð �r Z 1; �z Z 0ÞZQ
ss

s0

� �
Z

Gdc

ssc
Z

GWad

sss0c
; ðB 4Þ

where Q is a dimensionless function determined by
finite element simulations. Thus, the pull-off stress is
determined by the solution of the equation (B 4). Given
the Poisson’s ratio n, it has the form

ss

s0
ZFðcÞ; ðB 5Þ

where chs20c=2pE
�Wad. Finite element simulations

are carried out to determine the function F(c) in
equation (B 5).
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APPENDIX C. ABAQUS IMPLEMENTATION
DETAILS

Since the normalized pull-off stress depends only on
chs20cð1Kn2Þ=2pEWad, we fix s0, c, E and n while
varying Wad by varying dc in our simulations. In
ABAQUS, four-node bilinear axisymmetric solid elements
are used to mesh the elastic fibre with radius of 1 mm
and height of 10 mm. The elastic fibre has Young’s
modulus 2 MPa and Poisson’s ratio 0.49. A rigid plane
is created under the fibre and the interface is assigned to
have full friction by constraining the nodal displace-
ment in the radial direction. DB cohesive (users)
elements are defined on the interface with fixed intrinsic
strength s0Z0.1 MPa. The critical opening dc was
varied in the simulations from 0.05 to 20 nm. For each
dc, a sufficiently large displacement is applied on the top
of the fibre through incremental steps. A static stress
analysis is carried out to obtain pull-off. The stress in
the fibre far away from the interface is uniform and is ss
when pull-off occurs. ss/s0 versus cZs20c=2pE

�Wad is
plotted in figure 4.
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